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Abstract. We present a detailed description of measurements performed with a novel double optical lattice
setup. In this we trap two different cesium hyperfine ground states in separate periodic potentials. A
detailed account of the technical solutions and its foundations are given. We demonstrate the possibility
to modulate the relative spatial position of the lattices and perform a series of systematic measurements
in order to investigate the static and dynamic properties of the double optical lattice system.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 32.80.Qk Coherent control of atomic interactions
with photons

1 Introduction

Optical lattices are periodic arrays of micro-traps created
by the interference of two or more laser beams [1,2]. The
potential depth of these traps is low, typically around a
hundred recoil energies. One key feature of near-resonant
optical lattices (NROL) is an inherent “Sisyphus” cool-
ing mechanism that stems from the interplay between the
dipole force and optical pumping in multilevel atoms. It
is efficiency makes it possible to extract enough kinetic
energy from the atoms so that they become localized in
the optical potential wells. The atoms are thus arranged
in a crystal-like ordered structure, kept in place only by
their interaction with the radiation field, and are there-
fore well isolated from the environment. The interatomic
distance is of the order of the optical wavelength, which
is large enough to prevent the atoms from coupling via
dipole-dipole interactions. If it is possible, however, to
change the interatomic distances, these interactions could
be turned on/off in a controlled way in order to entan-
gle atomic wave functions. Thus, one essential prereq-
uisite for the experimental implementation of quantum
computational schemes would be fulfilled. Optical lattices
have therefore been suggested as promising candidates to
implement various schemes for coherent quantum state
manipulations [3–6]. Most proposals rely on the idea of
two interpenetrating optical lattices that trap two differ-
ent quantum states. By changing the relative position of
these lattices, interactions and, thus, phase-shifts in the
atomic wavefunctions would be introduced. This can be
used, for example, to build quantum-logic gates [3,5], sim-
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ulate ferromagnetism or to generate spin-squeezing [5].
While many applications require high filling factors in the
lattices, possibility to address single atoms, and that the
atoms are brought to their motional ground states, some
experiments can be performed with relaxed demands on
occupation number, addressing and ground state occu-
pancy.

Earlier suggestions for quantum state manipulations
involving optical lattices rely on the well-known lin⊥lin
configuration for one-dimensional optical lattices [1,2].
Here, two orthogonally polarized counterpropagating laser
beams of equal irradiance and wavelength produce an in-
terference pattern that can be decomposed into two stand-
ing waves of circular polarizations (σ+ and σ−), spatially
offset by λ/4. Due to a negative light shift (which is the
case for negative detuning), the nodes of these two stand-
ing waves become potential minima for two different spin
directions. If the atoms are slow enough, they get trapped
around these minima. By changing the angle between the
polarization vectors, atoms with opposite spins can be
brought together. In such a configuration, however, the
atoms are confined in only one direction, so that spatial
diffusion and many-body effects have to be accounted for.
Furthermore, this scheme also alters the shape of the po-
tential wells.

In this paper we summarize the results from [7] and
present a more detailed account of the approach in which
we use two three-dimensional optical lattices for Cs, us-
ing the D2 line. Apart from using the ordinary cycling
transition (Fg = 4 → Fe = 5)1, we create an additional
lattice based upon the (Fg = 3 → Fe = 4) resonance,

1 F is the total angular momentum quantum number.
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Fig. 1. Schematic level dia-
gram. Two ground states |gA〉
and |gB〉, separated by �∆g,
are connected by two laser
fields of frequencies ωA and ωB

to the excited states |eA〉 and
|eB〉. The splitting between the
excited levels is �∆e.

thus replacing the repumper beam of standard laser cool-
ing schemes. Hence, two different Cs ground states are
trapped in two distinct lattices with virtually no cross
talk, but with nearly identical lattice constants. The lat-
tices can be moved relative to each other along all three
coordinate axes and qualifies as a candidate for quantum
state manipulations.

2 Concept

Our idea is to use two different transitions to trap two dif-
ferent ground states |gA〉 and |gB〉 in two spatially overlap-
ping lattices that are created by two distinct laser fields
with frequencies ωA and ωB (see Fig. 1). The prerequi-
sites are that on one hand the energy separation between
the ground states �∆g is large enough to avoid cross-talk
between the respective lattices, but on the other hand so
small that the lattice constants are practically identical.
Thus, the lattices will not dephase significantly across the
lattice volume (diameter L). These conditions can be sum-
marized as follows:

∆g � ∆e

∆g � c

L
∆g � ∆A, ∆B. (1)

In our experiment, this scheme is applied to optical lat-
tices operating on the D2 line in Cs (λ ≈ 852 nm). Two
diode lasers are detuned below the (Fg = 4 → Fe = 5)
and (Fg = 3 → Fe = 4) transitions respectively, so that
∆g/2π ≈ 9.2 GHz, ∆e/2π ≈ 250 MHz and L ≈ 0.6 mm.
We use a four beam lattice geometry which is a general-
ization of the 1D lin⊥lin configuration to 3D [1,2]. Two
pairs of laser beams with orthogonal polarization propa-
gate in the xz-plane and yz-plane, respectively. The angle
between the beams of each pair is 90◦, and the angle be-
tween each beam and the vertical quantization axis is 45◦
(see the inset in Fig. 2). The resulting lattice structure is
tetragonal, with alternating σ+/σ− sites that trap atoms
in the magnetic substates mg = ±Fg. The lattice con-
stants are a⊥ = 2λ/

√
2 perpendicular to the quantization

axis, and a|| = λ/
√

2 parallel to the quantization axis.

Fig. 2. Schematic overview over the alignment of the double
optical lattice. Shown is, how the two different laser beams are
overlapped and then split into four beams. The upper inset
shows the geometrical beam configuration. In the lower inset,
the principle of beam prolongation is illustrated.

A detailed treatment of the lattice properties is given
in Appendix A.

The advantage of using N + 1 beams for an
N -dimensional lattice is the robustness of the configura-
tion against random phase changes in either one or all
beams. As shown in Appendix A, a phase fluctuation oc-
curring equally in all four beams of one lattice, e.g. caused
by a random phase jump in a laser, will leave the lattice
pattern unaltered. Consequently, there is no need to phase
lock the two lasers that generate lattices A and B. Phase
changes occurring in a single beam of one lattice will only
translate the lattice. By letting the 2×4 beams that form
the two lattices follow identical beam paths, and giving
them identical spatial modes, such translations will hap-
pen equally in both lattices.

3 Implementation

In order to implement this concept, we use the setup
shown schematically in Figure 2 for the alignment of the
lattice beams. The two laser beams used to generate lat-
tice A and B are combined with a polarizing beam splitter
cube (PBS 1) and fed into an optical fiber for spatial fil-
tering. Leaving the fiber, the beams overlap perfectly and
have orthogonal polarizations. The polarizations are then
rotated with a λ/2 plate in such a way that they form
a 45◦ angle with the plane of incidence of another po-
larizing beam splitter. Thus, both beam A and beam B
are split into two branches with equal irradiance for each
frequency. Repeating this procedure for each branch, one
gets a total number of four beam pairs, each containing
two frequencies. This arrangement is very sensitive to im-
purities in the polarizations, which therefore have to be
carefully cleaned. A slight error in polarization will make
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it impossible to balance the irradiances of the different
lattice beams.

In this way one can be sure that the relative position
of the lattices is insensitive to phase fluctuations, caused
for instance by micro-vibrations in optical components.
Any vibration in an optical component in beam line A (or
B) occurring before PBS 1 (see Fig. 2) will propagate in
all four branches and will not have any effect on the lat-
tices. On the other hand, if a small displacement occurs
in a component on the other end of the fiber, both beams
will be affected and the lattices will be translated equally.
A large displacement (several millimeters), however, will
translate the lattice by slightly different amounts. This
opens up the possibility for a relative displacement, or a
change in relative spatial phase, of the lattices. Such a
large displacement can be achieved by changing the opti-
cal path length for the beam pairs with a low-cost device
consisting of a pair of right angle prisms, one of which is
mounted on a linear translation stage (see Fig. 2). The
translation stages can be rotated so that their transla-
tion axes are parallel with the directions of the incoming
beams. Moving the translation stage will thus not dis-
place the beam, but only result in a prolongation (2δ)
of the optical path length (and hence the relative phase
of the beams). Such a “translator” is placed in each beam
pair, which gave us the opportunity to apply relative phase
changes in all directions. Prolonging beam 4 and shorten-
ing beam 3, for instance, results in a relative translation
along the x-axis. Prolonging beams 3 and 4 by the same
amount changes the spatial phase along the z-axis. In Ap-
pendix A we derive the needed translations for certain
spatial phase shifts between the two lattices. The transla-
tion stages were operated manually.

4 Experimental details

The atoms are provided by a magneto-optical trap (MOT)
initially tuned 2–3Γ below the (Fg = 4 → Fe = 5)
resonance. Here, Γ denotes the natural linewidth, with
Γ/2π = 5.2 MHz. The MOT is loaded from a chirped-
slowed atomic beam, produced in a thermal source. The
loading takes about 4 s and fills the MOT with approx
6 × 106 atoms at a peak density of 1.7 × 1011 cm−3. In
order to avoid optical pumping into the dark Fg = 3
ground state due to off-resonant excitations, we apply a re-
pumper beam, tuned to the (Fg = 3 → Fe = 4) resonance.
The atomic cloud is further cooled in several time-steps
in which the magnetic field of the MOT-coils is switched
off, the detuning is increased and the irradiance reduced.
Eventually, the MOT beams are switched off and the lat-
tice beams are turned on. We let the atoms equilibrate
for about 25 ms before the lattice beams are extinguished
and we extract the thermal velocity distribution along the
(vertical) quantization axis from a time-resolved fluores-
cence signal, the so-called time-of-flight (TOF) method [8].
As the TOF probe we use a thin sheet of light (about
1 cm wide, less than 50 µm thick, and located 5 cm be-
low the optical lattice) is produced with a cylindrical lens
(f = 1 m) and contains two frequencies, resonant to the

(Fg = 3 → Fe = 4) (probe A) and (Fg = 4 → Fe = 5)
(probe B) transitions. Analogous to the lattice beams,
they are combined before they are fed through an optical
fiber for spatial filtering. Our combined velocity resolu-
tion is around 0.05 mm/s, where the main contribution
is fluctuations in the width of the atomic cloud (approx.
0.4 mm in diameter, with fluctuations significantly smaller
than 10%), which has to be deconvoluted from the data.
The probe beam is so thin that is does not contribute to
the error in the temperature measurements, and neither
does the pointing stability or the electronic time resolu-
tion of the detection. When assigning a temperature to a
velocity distribution, the main error probably stems from
the fact that the distribution does not necessarily need to
be Gaussian. We estimate that the total error in the ab-
solute value of the temperature is about 50 nK, as long as
the Gaussian fits are reasonable. When comparing two dif-
ferent measurements, we can see temperature differences
smaller than that.

5 Temperature measurements

In order to test the scheme to shift the optical lattices,
and to see if a double optical lattice would lead to im-
proved cooling, we measured the equilibrium temperature
TB of the atoms trapped in the (Fg = 4) ground state (lat-
tice B) as a function of the relative lattice displacement.
Both lattices were operated 19Γ below their respective
resonances. We displaced the lattices along one coordinate
axis by changing the position of the translation stages, as
described above, and we used probe B for the TOF mea-
surements. We define the relative spatial phases

ϕx,y = 2π
δx,y

a⊥
, ϕz = 2π

δz

a‖

where δi is the shortest distance between a σ+-site of
lattice A and a σ+-site of lattice B projected on the i-
coordinate. In Figure 3a [7] the result of a scan along ẑ
for fixed ϕx,y is shown, where the temperature T is plotted
versus the relative displacement δz in units of the lattice
constant a‖. The origin is arbitrary and corresponds to an
equal displacement of all four translation stages. There is
a clear dependence of T on δz. As shown in Figure 3b, the
modulation amplitude of the sinusoidal curves decreases
when lattice A is close to the (Fg = 3 → Fe = 4) reso-
nance, while the minimum temperature remains constant.
A notable exception occurs when ∆A = 0Γ , where the
minimum temperature is slightly lower. compared to an
ordinary optical lattice with a single resonant repump-
ing beam. The periodicity of all fits is 0.9a‖ which within
the experimental uncertainties reproduces the calculated
value a‖.

In order to explain the variation of T with δz one has
to distinguish between two cases. If lattice A is operated
close to resonance, ∆A � Γ , the modulation depth of the
optical potential is very small. For this case, a model in-
troduced in [9] can be applied. Here, the optical potential
for the lower ground state is not modulated, but exhibits
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Fig. 3. (a) Temperature as a function of relative displace-
ment δz of the two lattices in units of the lattice constant a‖
(from [7]). (b) The same for different detunings ∆A. Each data
point is an average of 5 TOF measurements. Also shown are
fits of the form T = T0 + C sin(2πz/q).

a polarization gradient. If σ+-sites of the optical lattice
overlap with σ+-sites of the repumping light, cooling is
enhanced, while σ+-sites overlapping with σ−-sites lead
to heating.

For higher modulation depths, the variation can be
explained with another, similar, semi-classical picture in
which the atoms perform oscillating motion in the wells of
the adiabatic potentials [7]. If the σ+-sites of one lattice
coincide with the σ+-sites of the other, optical pumping
will transfer the atoms from one trapping potential to an-
other and nothing much will happen. On the other hand,
if σ+-sites overlap with σ−-sites (and vice versa) optical
pumping will now move the atom from a trapping poten-
tial to an antitrapping one. The gain in potential energy
from the light field is converted into kinetic energy as the
atom starts to slide down the potential. Additional heat-
ing occurs due to multiple optical pumping cycles because
in the new ground state it “sees” σ−-light. We therefore
expect that temperature minima correspond to ϕz = 0,
whereas maxima occur for ϕz = π.

We also performed a two-dimensional scan across the
the yz-plane [7]. First a T vs. δx-scan was made to de-
termine a temperature minimum. Thus we made sure the
lattices overlapped with respect to a projection onto the
x-direction. We then repeatedly took T vs. δz-curves for
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Fig. 4. (a) Measured temperature in the double optical lattice
plotted as a function of the relative displacements δy , δz of the
two lattices in the yz -plane (from [7]). (b) Calculated irradi-
ance (in arbitrary units) of the σ+ component as a function of
position for one of the lattices.

various δy. This could be used to construct a temperature
surface for the selected plane, as illustrated in Figure 4a.
Also shown is a plot of the calculated irradiance of the
σ+-component of the laser field, which corresponds to the
diabatic optical potential [1,2] for the |Fg = 4, mg = +4〉
ground state. A comparison shows that the dependence of
the temperature on the relative displacement between the
lattices allows us to create a map of the potential topog-
raphy.

Furthermore we varied the potential depth in lattice A
or lattice B, UA,B, for given pairs of detuning ∆A,B and
measured TB using only probe B. The results are shown in
Figure 5. The plots are very similar, with the linear depen-
dence of TB on U and the abrupt increase of the tempera-
ture for low U . The slope dTB/dUB = 0.013 µK/ER

2 is in
good agreement with previous results [10]. The measured
value for dTB/dUA is 0.006 µK/ER. In order to emphasize
this small slope, Figure 5a is plotted in a different scale
than Figure 5b. For broad distributions, we are more sen-
sitive to fluctuating backgrounds, and thus the scatter in
the data is slightly larger lager (around 100 nK) than for
lower temperatures.

2 ER is the recoil energy defined as ER = (�k)2/2m, where
k = 2π/λ and m is the atomic mass.



H. Ellmann et al.: Investigation and characterization of a 3D double optical lattice 359

Fig. 5. Temperature of atoms in lattice B as a function of
the modulation depths UA,B. (a) TB scales linearly with UA

for depths down to 30ER. At lower modulation depths the
temperature increases again. (b) TB plotted versus UB.

The result in Figure 5 could indicate that Sisyphus
cooling is present in lattice A, but a more systematic in-
vestigation would be necessary to confirm this hypothesis.

6 Rate measurements

An important difference between the two lattices is that
one of them is operating on the cycling (Fg = 4 → Fe = 5)
transition, while the other lattice uses the non-cycling
(Fg = 3 → Fe = 4) transition. We therefore expect
that the relative populations of the two lattices are highly
asymmetric, because the atoms tend to become optically
pumped into lattice B. The suggestions for coherent quan-
tum state manipulation presented in [3–5] rely on con-
trolled interactions between atoms of neighbouring lattice
sites, where the interatomic distance is adjusted to induce
phase shifts in the atomic wave functions. It is therefore
important that both lattices are sufficiently populated so
that induced collisions are probable. Also, the experiments
have to be performed on a timescale smaller than the
typical decoherence time. We have measured the relative
number of trapped atoms in the lattices and the optical
pumping rates between them. By switching off lattice A
before lattice B for various time delays δt, lattice B is
depleted. The relative number of atoms remaining in lat-
tice B, NB, is determined by integrating the area under

Fig. 6. Number of atoms in lattice B (normalized to NA+B)
and total number of atoms as a function of the time delay δt
between the switching off lattice A and lattice B. Shown is also
an exponential fit to the decay curve of NB, yielding a decay
time τB = 0.8 ms.

the TOF signal when only probe B is used. The total num-
ber of atoms NA+B is obtained using both probe A and
probe B simultaneously. In this case probe A will pump
atoms from |gA〉 into |gB〉 where they can be detected with
probe B. Figure 6 shows a typical plot for an optical pump-
ing curve taken at ∆A = −19Γ , UA = 21ER, ∆B = −38Γ ,
UB = 112ER

3. NB decays exponentially with increasing
delay time, while NA+B remains constant. Slight irregu-
larities in NA+B can be attributed to run-to-run fluctua-
tions when loading the MOT. To test the reliability of the
method described above we measured NB as a function
of δt using an absorption imaging technique. The results
were identical within the experimental uncertainty.

We performed a systematic investigation of both
pumping rate and relative populations for a wide range
of the lattice parameters [7], with ∆A ranging between
−7.6Γ and −85Γ , and ∆B between −7.7Γ and −38Γ . For
each combination of detunings the decay rates were mea-
sured for beam irradiances from IA,B = 0.8 mW/cm2 to
IA,B = 4.0 mW/cm2. An exponential was fitted to each
decay curve from which the lifetime τB for the atoms in
lattice B was extracted. In Figure 7a we show γB = 1/τB

as a function of IB for different detunings.
The optical pumping rate, γB, out of |gB〉 increases

with increasing irradiance, since the photon scattering
scales linearly with the irradiance. The measured opti-
cal pumping times, τB, range between 0.6 ms and 4 ms,
with an uncertainty of about 15–20%. We also notice that

3 At large detunings, such as −38Γ , the laser frequency is ac-
tually closer to the next neighbouring transition. Nevertheless,
UB can still be calculated without taking this transition into
account. This is because the atomic dynamics is dominated by
the lowest of the total adiabatic potentials, which is in turn
almost unaffected of the close blue detuned transition. This is
shown experimentally in [10].
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Fig. 7. (a) Optical pumping rates γB as a function of the
irradiance IB for three different detunings ∆B. (b) The same
data replotted as a function of the scattering rate ΓB, which we
define as irradiance divided by the square of the detuning with
respect to the (Fg = 4 → Fe = 4) transition. The insets show
the parameters for the linear fits applied to the data points.

γB increases for increasing |∆B|. This is explained by tak-
ing the non-cycling (Fg = 4 → Fe = 4) transition into
account. The detuning with respect to that transition is
∆B+48Γ , so increasing |∆B| decreases the detuning to the
non-cycling transition. For γB this is the relevant detun-
ing, since excitation to Fe = 4 is the only path to Fg = 3.
Hence optical pumping into |gA〉 is enhanced. The linear
fits to the data points do not intercept the origin, contrary
to what one would expect.

In Figure 7b we replot the decay rates as a function of
the scattering rate ΓB, which we define as the departure
rate out of lattice B due to the coupling between Fg = 4
and Fe = 4. ΓB provides no universal scaling, indicating
that the processes involved in transferring the atoms be-
tween the lattices are more subtle.

The optical pumping rate out of lattice A, γA, was
estimated by assuming a trivial rate equation at steady

Fig. 8. Relative population of lattice B as a function of IB for
three different detunings of lattice A.

state:

dNB

dt
= −γBNB + γANA = 0. (2)

This yields optical pumping times τA roughly between 6 µs
and 300 µs, but with large error bars (around 50%).

For the measurements of the equilibrium populations,
NB and NA, the same set of irradiances and detunings
were used. As expected, the relative population of the
Fg = 4 ground state is much larger than the popula-
tion of Fg = 3. Typically NB/NA+B ≈ 95%. This number
decreases with increasing (decreasing) irradiance in lat-
tice B (lattice A), as shown in Figure 8. Also NB/NA+B

decreases with increasing |∆B| due to off-resonant cou-
pling from Fg = 4 to Fe = 4, and increasing |∆A| due
to lower scattering rates (Fig. 8). For a set of detun-
ings ∆A = −55Γ, ∆B = −19Γ and optical potentials
UA = 20ER, UB = 450ER, the relative population in lat-
tice B was as low as 75%.

7 Discussion of the results

We find, that the temperature in a double optical lattice
depends on the relative displacements δx, δy and δz. The
modulation of the temperature is present for all investi-
gated detunings ∆A, although the mechanisms leading to
the modulation might be different. The variation of the
temperature in lattice B, TB, with the optical potential
in lattice A, is difficult to explain. The data was taken at
high irradiances and at a detuning ∆B = −19Γ , so that it
is possible, that atoms spend enough time in lattice A in
order to be cooled. On the other hand, this would imply,
that the temperature in a double optical lattice should
be lower than in a single optical lattice, but our measure-
ments indicate that this is not the case.

The pumping rates are, as expected asymmetric:
lattice A is depopulated much faster than lattice B.
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By adjusting irradiances and detunings one can ma-
nipulate these, and the relative populations, consider-
ably. The departure rate out of lattice B, γB, is not
a linear function of the optical pumping rate due to
the (Fg = 4 → Fe = 4) transition. Depending on the lat-
tice parameters, the atoms are in very different regimes
and optical pumping might be suppressed by the Lamb-
Dicke effect. The optical pumping rates are small enough
to keep the vibrational levels in the potential wells re-
solved [7].

At present, the model for the cooling and transfer pro-
cesses in the double optical lattice is not complete. In the
near future we plan to do numerical simulations, which
hopefully will give us more insight.

8 Possible application for coherent quantum
manipulations

In order to implement many of the suggestions in [3–5],
several prerequisites have to be fulfilled.

Both lattices have to be sufficiently populated to allow
controlled interactions. Our results show that it is possi-
ble to trap atoms in two different ground states and by
choosing the lattice parameters (detunings, irradiances)
appropriately, a significant amount of atoms will be in
the lower ground state |gA〉. At present, the filling fac-
tor of our optical lattices is around one percent, but this
can be improved by loading from a compressed MOT [11].
Since [11] relates to optical lattices tuned far from reso-
nance, we can not expect as high filling factor as in that
work, but preliminary experiments show that our current
occupation can be improved significantly. Furthermore, it
is possible to transfer atoms between the lattices by stim-
ulated Raman-transitions.

Although not always necessary [5], it is desirable that
the atoms are in the vibrational ground states of their
trapping potentials. Our double optical lattice offers the
possibility for a new method for Raman sideband cooling
which may facilitate this. This is described in [7].

The interactions between the atoms have to be
switched on and off, on a time scale faster than the deco-
herence time. As shown in [12], a tightly bound atom in an
optical lattice has a decoherence time of about 50 scatter-
ing times (τsc). If the mission is to build a quantum gate,
and the q-bit is encoded in the internal state (lattice A or
B), the optical pumping time between the lattices will be
a more severe limitation. In our case, the optical pumping
time out of lattice A is 1.7τsc (given by the branching ratio
from the upper level in the open transition). For lattice B,
it depends on the detuning, but it is always much longer.
This would require a gate time of less than a millisecond,
even for the most favorable parameters among those we
have used in this work. The system is still feasible, even
at these near-resonance conditions, for more crude forms
of quantum state manipulation, such as the simplest sug-
gestions in [3], where not much time is needed. With more
powerful lasers, the detuning could be increased substan-
tially. If one set of lattice beams is detuned above its tran-
sition, and the other one below, one could use detunings

Fig. 9. Schematic overview of a setup involving an electro-
optic modulator (EOM) as a phase shifter. After the fiber,
the beams are split with a beam splitter, thus preserving the
perpendicular polarizations of the two lattice frequencies. The
EOM only shifts the phase of one polarization component.

as large as 5 GHz (resulting in a detuning of 14 GHz for
the “unwanted” transitions). For a well depth of 100ER

the optical pumping time from lattice A would then be
3 ms, and a quantum gate at that speed may be possible.

If a q-bit is encoded in the motional state of a po-
tential well, as recently suggested in [13], the situation
changes. The wells for lattice A and B can easily be chosen
to have the same curvature. For two overlapping lattices,
one would get a situation analogous to two coupled quan-
tum mechanical harmonical oscillators, both coupled to a
thermal reservoir (compare [14] and [15]). In this situation,
it is likely that the coherence of the motion is preserved
as long as around 50τsc, as in [12]. On the other hand,
displacements of the lattices will degrade this coherence,
so “gating” can not work in quite the same way. If, on the
other hand, a truly far-off resonance conditions is chosen
one need not worry about optical pumping. One would
then have mixed potentials, but it would still be possible
to prepare specific motional states, and to do translations.
This system would be similar to arrays of microtraps, re-
ported about in [16], and to suggestions in [13]. The differ-
ences are that our lattice spacing is much smaller, which
makes fast displacements easier, but single-bit addressing
much harder. Also, we never have more than one atom
per well, and typically much less, whereas in [16], they
normally have several.

Relative displacements of the lattice have to be adia-
batic with respect to the oscillatory motion of the atoms
in the potential wells. The oscillation frequency is

ν = νR

√
2U0/ER (3)

where U0 is the modulation depth of the optical potential,
and νR = ER/h = 2.07 kHz is the recoil frequency. With
higher detunings and higher intensities, U0 could be made
large enough to yield frequencies higher than 100 kHz
while maintaining low scattering rates. In the present
setup, relative displacements are achieved by changing
the optical path lengths with linear translation stages. To
make rapid displacements possible we suggest the follow-
ing scheme, illustrated schematically in Figure 9. The po-
larizing beam splitter (PBS) after the optical fiber from
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Figure 2 is replaced with a non polarizing one, so that both
light components remain orthogonally polarized. One of
the two laser beam pairs passes a phase-shifting electro-
optical modulator (EOM), which only shifts the phase of
the horizontally polarized component. The polarization of
the laser beams is rotated with a λ/2-plate to form a 45◦
angle with the next PBS. The splitting into four beam
pairs is done in the same way as in Figure 2. In this way, a
rapid relative displacement of the lattices is possible along
the z-axis. Typical rise times for an EOM are in the order
of 1 µs and below. The scheme can be further extended to
allow a translation along all three Cartesian axis.

An alternative way to induce interactions could be to
switch off the short-lived lattice A and move lattice B on a
time scale short enough to avoid spatial diffusion of atoms
in |gA〉.

9 Conclusion

In summary, we have demonstrated that the suggested
method to cool and trap two different cesium hyperfine
ground state works, and that it is possible to modulate
the relative position of the lattices, with the tempera-
ture as an indicator. In this paper we have described the
methodology for doing double optical lattice experiments.
We have also performed a detailed study of the transfer
rates between the two lattices, which can be controlled by
an appropriate choice of irradiances and detunings. The
parameter space is large, and presently we have no consis-
tent model to explain all the numerous results in a satis-
factory way, but we hope to be able to clarify some of the
open questions using numerical simulations.

We would like to thank Dr. Uwe Sterr for helpful discussions
and Rafael Velasco-Fuentes for his help during the preparations
of the experiment. This work was supported by Carl Tryggers
Foundation and Knut and Alice Wallenbergs Foundation.

Appendix A

Electric field configuration

Comparing with Figure 2 the electric fields of the four laser
beams constituting one optical lattice, can be written as:

E1 = E0x̂ cos(k⊥y − k‖z − ωt)
E2 = E0x̂ cos(−k⊥y − k‖z − ωt)
E3 = E0ŷ cos(k⊥x + k‖z − ωt)
E4 = E0ŷ cos(−k⊥x + k‖z − ωt), (4)

where k⊥ = kL sin θ and k|| = kL cos θ, kL = 2π/λ, θ is the
angle between the beams and the quantization (z-) axis
and λ is the laser wavelength.

The total electric field can be computed (see e.g. [17])
in complex notation [18], and is a sum of two components

with σ+- and σ−-polarization respectively.

ẼTOT =

2E0

{
ei π

4 cos(k‖z)
(

cos(k⊥ y) + cos(k⊥ x)
2

)

+ ei 34π sin(k‖z)
(

cos(k⊥ y) − cos(k⊥ x)
2

)}
eiωt

+ 2E0

{
e−i π

4 cos(k‖z)
(

cos(k⊥ y) − cos(k⊥ x)
2

)

+ e−i 34 π sin(k‖z)
(

cos(k⊥ y) + cos(k⊥ x)
2

)}
e−iωt.

(5)

For z = 0 the lattice structure in the xy-plane is re-
duced to:

ẼTOT = 2E0

{
ei π

4

(
cos(k⊥ y) + cos(k⊥ x)

2

)}
eiωt

+ 2E0

{
e−i π

4

(
cos(k⊥ y) − cos(k⊥ x)

2

)}
e−iωt. (6)

In this plane the lattice constants are equal a⊥ = 2π/k⊥.
Along the z-axis (x = y = 0) the interference pattern can
be written as:

ẼTOT = 2E0

{
ei π

4 cos(k‖z) eiωt + e−i 34 π sin(k‖z) e−iωt
}

.

(7)

The lattice constant is a|| = π/k⊥. The lattice structure is
tetragonal, with alternating σ+ and σ− potential minima.
In our experiment θ=45◦, thus k‖ = kL sin θ = (1/

√
2)kL,

and k⊥ = kL cos θ = (1/
√

2)kL. This particular configura-
tion has a lattice constant a‖ along the z-axis given by:

a‖ =
π

k‖
=

π
1√
2
kL

=
1√
2

λ (8)

and in the x and y-axis the lattice constant is given by

a⊥ =
2π

k⊥
=

2π
1√
2
kL

=
2√
2

λ. (9)

Changing the optical path length for one beam

If the optical path length of beam 1 (see Fig. 2) is changed
by a distance 2δ, the electric field E1 becomes:

E1 = E0x̂ cos(k⊥y − k‖z + 2δkL − ωt)
= E0x̂ cos(k⊥y − k‖z + ϕ − ωt) (10)

here ϕ = 2δkL is the corresponding phase shift. Once more
writing the total electric field as a phasor in a circularly
polarized basis and repeating the transformation from the
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ẼTOT = E0

�
e−ik‖zei ϕ

2 cos(k⊥y + ϕ/2) + ieik‖z cos(k⊥x)
�

e−iωt + E0

�
eik‖ze−i ϕ

2 cos(k⊥y + ϕ/2) + ie−ik‖z cos(k⊥x)
�

eiωt

= E0

�
e−i(k‖z− ϕ

4 ) cos(k⊥y + ϕ/2) + iei(k‖z− ϕ
4 ) cos(k⊥x)

�
ei

ϕ
4 e−iωt

+ E0

�
ei(k‖z− ϕ

4 ) cos(k⊥y + ϕ/2) + ie−i(k‖z− ϕ
4 ) cos(k⊥x)

�
e−i ϕ

4 eiωt (11)

ẼTOT =

2E0

�
e−i π

4 cos(k‖z − ϕ

4
)

�
cos(k⊥y + ϕ/2) − cos(k⊥x)

2

�
+ e−i 34 π sin(k‖z − ϕ

4
)

�
cos(k⊥y + ϕ/2) + cos(k⊥x)

2

��
e−i(ωt−ϕ

4 )

+ 2E0

�
ei π

4 cos(k‖z − ϕ

4
)

�
cos(k⊥y + ϕ/2) + cos(k⊥x)

2

�
+ ei 34 π sin(k‖z − ϕ

4
)

�
cos(k⊥y + ϕ/2) − cos(k⊥x)

2

��
ei(ωt−ϕ

4 )

(12)

preceding section we obtain:

see equation (11) above.

Equation (5), and equation (11) are equivalent un-
der a change of variables k‖z → (k‖z − ϕ/4) and
k⊥y → (k⊥y + ϕ/2). We thus obtain (after shifting the
origin along the z-axis)

see equation (12) above.

A prolongation of the optical path of beam 1 with 2δ will
thus lead to a phase change of the lattice by ϕ/2 along
the y-axis and by ϕ/4 along the z-axis.

In the particular case of θ = 45◦ and ϕ = 2δkL the
phase change along the y-axis will be equal to

ϕ

4
=

2
4
δkL =

2
4
δ
2π

λ
= δ

π

λ
(13)

and along the z-axis it will be given by

ϕ

2s
=

1
2
2δkL = δ

2π

λ
· (14)

A phase shift of π corresponds to an increase of 1
2
√

2
λ in

physical space, hence:

phase change → displacement

π → 1
2
√

2
λ

ϕ

4
= δ

π

λ
→ δ

λ

1
2
√

2
λ =

δ

2
√

2
ϕ

2
= δ

2π

λ
→ δ√

2
· (15)

Moving the translation stage a distance δ will displace the
lattice by δ/2

√
2 in the ẑ-direction, and by δ/

√
2 in the

−ŷ-direction.

Changing the optical path of a pair of beams

If the optical path of beam 1 and beam 2 (see Fig. 2) are
increased by 2δ, the electric fields become

E1 = E0x̂ cos( k⊥ y − k‖z + ϕ − ωt)
E2 = E0x̂ cos(−k⊥ y − k‖z + ϕ − ωt). (16)

Because of the symmetry of the laser beam configuration,
a prolongation of beam path 2 by 2δkL results in a trans-
lation of the lattice by −ϕ/2 along the y-axis and by −ϕ/4
along the z-axis. Together with the effect of the prolonga-
tion of beam path 1 the total translation is −ϕ/2 along ẑ,
while the position along ŷ remains unchanged.

Changing the optical path of all beams

For a simultaneous change of all four lattice beams, the
electrical fields become:

E1 = E0x̂ cos( k⊥ y − k‖ z + ϕ − ωt)
E2 = E0x̂ cos(−k⊥ y − k‖ z + ϕ − ωt)
E3 = E0ŷ cos( k⊥ x + k‖ z + ϕ − ωt)
E4 = E0ŷ cos(−k⊥ x + k‖ z + ϕ − ωt). (17)

Thus, the position of the lattice will remain unchanged.
The phase ϕ is absorbed in the time-phase ωt. Thus, ran-
dom phase jumps in the single laser beam, from which the
fields Ei are derived, will not affect the optical lattice.

Overlapping two optical lattices

Here, we derive the travel range of the translation stages,
which is necessary to change the relative position of the
lattices by a given amount. The two laser wavelengths are
λB = 852.355 nm and λA = 852.335 nm. Assume, that at
z = 0, the σ+-sites of both lattices coincide. Along ẑ, the
standing waves of σ+-light can be written as cos(2k‖Az)
and cos(2k‖Bz). After a certain distance z′ the lattices will
have dephased completely, so that:

cos
(
2k‖A z′

)
= − cos

(
2k‖B z′

)

cos
(

4√
2

π

λA
z′

)
= cos

(
4√
2

π

λB
z′ − π

)

comparing the arguments of the cosine functions we obtain

z′ =
√

2

4
(

1
λB

− 1
λA

) = 1.2869 cm.
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In an analogous fashion the x- and y-directions can be
treated:

cos(k⊥Ay′) = − cos(k⊥By′)

yielding:

y′ =
√

2

2
(

1
λB

− 1
λA

) = 2.5738 cm.

In order to move an optical lattice along the y-axis by a
given amount ∆y, we have to increase the optical path of
one beam by 2

√
2∆y, i.e. we have to move the transla-

tion stage by
√

2∆y. Thus, to achieve a change in relative
spatial phase by π, we need:

δ′ =
√

2 y, δ′ = 3.6399 cm.

For a translation along ẑ, the same considerations lead to
∆z = z′, which gives:

δ′ =
√

2 z′, δ′ = 1.8199 cm.

Thus y′ and z′ are much larger than the diameter of the
lattice (≈0.05 cm). Thus, the relative spatial phase across
the lattice volume can be considered as constant.
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